Metastatic Gliosarcoma Mass Extension to a Donor Fascia Lata Graft Harvest Site by Tumor Cell Contamination

Ahmet Bekar¹, Ramazan Kahveci², Şahsene Tolunay³, Ahmet Kahraman², Turgut Kuytu¹

BACKGROUND: Brain glioblastoma multiforme is a malignant and highly aggressive entity that rarely shows extracranial and extraneural invasion. In the past 70 years, only eight cases of subcutaneous metastases have been reported.

CASE DESCRIPTION: A case of glioblastoma multiforme with extensive local cutaneous and subcutaneous involvement of previous surgical sites and a metastatic mass, which had developed in the graft donor area of the tensor fascia lata tendon used for the reconstruction of dura. According to the excisional biopsy results, the developed mass was defined as a gliosarcoma carrying the exact characteristics of the primary tumor.

CONCLUSIONS: Contaminated surgical tools and instruments can facilitate the distant spread of tumor cells. Therefore, the renewal of the surgical tools and instruments and irrigation of the surgical area after primary tumor resection is emphasized.

INTRODUCTION

Although primary brain tumors are responsible for a small number of cancer patient deaths, they dramatically reduce the quality of life because the tumors affect the patients in their prime of life. The disability and the burden of death due to primary brain neoplasms are substantial (12).

Gliosarcoma is a very rare type (1.8% to 2.4%) of glioblastoma, a malignant cancer of the central nervous system (7, 15). Previously it was defined as a glioblastoma consisting of gliomatous and sarcomatous components, but it is now defined as gliosarcoma by the World Health Organization (11).

When there is dural involvement, the defect occurs after intracranial tumor surgery. The dura is an anatomic structure that has to be restored to prevent the loss of cerebrospinal fluid, the formation of an ependymole, and infection. This restoration can be handled with synthetic and autologous materials. This case report presents a patient with gliosarcoma who had metastasis in the grafted area due to the implantation of tensor fascia lata (TFL) for the restoration of dura defect.

CASE REPORT

In 2007, a 52-year-old man was admitted to another hospital with complaints of seizure. A subtotal resection of the mass in the right frontal region was done. Histopathologic evaluation of the tumor identified it as a glioblastoma multiforme (GBM). Postoperatively the patient was treated with a total of 6000 cGy of external beam radiation but no chemotherapy. Four months after the operation, however, the patient was admitted to the emergency department of our University Hospital with complaints of headache and weakness in the left side. His physical examination was normal. The neurological examination revealed somnolence and hemiparesis on the left side. The magnetic resonance imaging (MRI) revealed an enhancing cystic lesion in the right frontal lobe. The 5 × 4 × 3 cm mass with a heterogeneous signal pattern surrounded by edema was visualized. This revealed a shift of 1 cm in the midline (Figure 1A).

Macroscopic total resections were performed in April 2007 and in January 2008. The histopathologic evaluation confirmed the diagnosis of GBM. The immunohistochemical results showed positive staining for glial fibrillar acidic protein (Figure 1B, C, D).

During follow-up, the patient displayed no neurological deficits and his seizures were controlled with antiepileptic medications. He was medicated with temozolamide (150 mg/kg) for 7 months.

Five months later, after the second operation, the patient returned to our hospital with complaints of headache and seizures. Physical examination at this time revealed a subcutaneous mass at the frontal scalp, approximately 2.0 cm from the closest postoperative scar. The MRI showed tumor recurrence in the right frontal lobe with necrosis in the middle part. Post-gadolinium MRI revealed an enhancing mass that had reached the scalp after infiltrating the periost, as well as a subcutaneous mass in the frontal region. The mass was resected completely, macroscopically. The resected lesions included frontal tumor, infiltrated dura and periost, and subcutaneous mass, but not the infiltrated scalp. The dural defect that occurred as a result of the total resection was restored with a TFL graft taken from the right upper leg. The cranioplasty is performed with three high-density porous polyethylene (Metpor, Newman, GA, USA).

Two months later, the patient returned to the hospital and presented with a 5.0-cm subcutaneous mass infiltrating the skin in the frontal scalp and a 2.0-cm subcutaneous mass in the right temporal scalp. A 10.0-cm subcutaneous mass under the previous inci-
A 0.7 cm incision scar in the right upper leg was detected during the physical examination. Neurological examination revealed somnolence and severe hemiparesis on the left side. The MRI showed a frontal mass. Post-gadolinium MRI showed an enhancing mass infiltrating the periost and reaching the scalp by invading almost the entire frontal and temporal scalp (Figure 1E). The scalp including infiltrated periost, frontal skin, as well as both temporal and frontal subcutaneous masses, was excised as a single unit. The scalp defect area was covered with a parieto-occipital scalp flap.

The area of the subcutaneous mass under the previous incision scar in the right upper leg matched with the donor area of the TFL graft used to restore the dura defect. The mass was resected together with the skin and the fascia underneath as a single unit (Figure 1F). The defect area was covered with a skin graft.

Pathologic examination of the excised lesions, including infiltrated periost, frontal skin, both temporal and frontal subcutaneous masses, and the femoral mass, identified these as the primary tumor mass (Figure 1G, H–J). The tumor was a sarcomatous GBM including fusiform cells. Two months later the patient was dead with multiple subcutaneous masses all over the scalp (Figure 1K, L).

DISCUSSION

Glioblastoma multiforme diffusely infiltrates the surrounding brain matter, but does not typically invade blood vessels and rarely metastasizes outside of the central nervous system. In fact, metastasis is exceedingly rare and is present in less than 2% of cases (9). When extracranial spread of a GBM is present, it is almost always preceded by an invasive intracranial procedure, resulting in either hematogenous dissemination or direct extension of the tumor (10). During the past 70 years, more than 250 extracranial metastases have been reported. Among these cases only eight are cutaneous–subcutaneous m-
tastases (2, 16, 18, 22). In all eight cases, the metastatic area was the one sectioned by scalpel during surgery (17). In the patient in the present case report, rapid gliosarcoma metastasis in the cutaneous–subcutaneous femur section due to implantation was identified. This represents the first such case reported in the literature.

Whether the initial glioblastoma contained sarcomatous elements that were overlooked at histologic analysis or the gliosarcoma developed de novo from the metastlastic transformation of the initial glioblastoma facilitated by radiotherapy remains elusive (2).

Although the exact mechanism of extraneural spread of GBM is not known there are other possible hypotheses such as the sympathetics, blood vessels, and through artificial shunts (5). Furthermore, we still need to know about potential markers that could indicate a specific tropism and adhesiveness of glioblastoma cells to mesenchymal or epithelial structures.

The TFL tendon graft is used for the restoration of dura defects due to its similarity in terms of structure, accessibility, and autologous transplantation of tumor cells at distant points spread through the surgery area, or the reconstruction area involves preventing the reuse of contaminated surgical tools after tumor resection, the use of fresh medical gloves, as well as sterile cover and irrigation of the operation field.

ACKNOWLEDGMENTS

We would like to thank Hasan Kocaeli, M.D., for his help in revising our article.

REFERENCES


